‘ ! ! . LLNL-TR-635681

LAWRENCE
LIVERM ORE
NATIONAL

worone | A Case for Improved C++ Compiler
Support to Enable Performance

Portability in Large Physics Simulation
Codes

R. D. Hornung, J. A. Keasler

April 24, 2013

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

A Case for Improved C++ Compiler Support to Enable
Performance Portability in Large Physics Simulation Codes

Richard D. Hornung and Jeffrey A. Keasler
Lawrence Livermore National Laboratory, Livermore, CA 94551°
(email: hornung1@llnl.gov, keasler1@llnl.gov)

Executive Summary

Vendors of modern computer platforms typically include the capacity of SIMD
vector units in advertised theoretical peak system performance. However, the
extensive, non-portable source code modifications required for compilers to
generate SIMD vector instructions are not manageable in large simulation codes.
Thus, realized performance is substantially less than one quarter to one eighth of
machine capability on current platforms. In this paper, we argue that to increase
efficiency of machine usage, compilers must improve their support for SIMD
vectorization and other optimizations. We show that good vectorization is possible
with current compiler technology but that it is impractical to achieve in large codes,
due to maintenance and portability concerns. We enumerate specific corrective
actions that compiler vendors could pursue to resolve some key issues. These
compiler improvements would also allow us to exploit other important forms of
parallelism in a portable manner through high-level software constructs.

1. Introduction
A few specific C++ compiler improvements would significantly boost the
prospects for achieving portable high performance with large physics codes.
Efforts at DOE Laboratories and in industry are exploring software abstractions
based on standard C++ features to solve HPC performance and portability
problems for current and future platforms. A major hurdle hampering compiler
optimizations is the pervasive use of C-style data pointers in simulation codes.
This forces compilers to make conservative assumptions about data aliasing and
alignment that typically prevent optimizations, such as SIMD vectorization.
Compilers do allow programmers to provide precise source code hints to
circumvent conservative assumptions. For example, every C++ compiler
recognizes the “_restrict_"” pseudo-keyword and provides directives for data
alignment that can assist SIMD vectorization. Indeed, all compiler vendor
optimization guides recommend using such code decorations, thus
acknowledging their necessity. However, these constructs are not innate to the

* This work was performed under the auspices of the U.C. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344. UCRL-TR-635681.

programming language and, thus, are inconsistently supported and maintained
across compilers. See the Appendices for details.

We view consistent encapsulation of compiler and platform-specific directives
and attributes within appropriate abstraction layers and typedefs as a critical
enabler of performance portability. The current inability to fully encapsulate all
necessary information is unsustainable, as it requires pervasive non-portable
code adornments. Even when encapsulation is possible with current compilers,
information is not consistently propagated through the compilation process and
yields “hit or miss” optimization, likely due to the informal support for these
features. Optimization quality varies across compilers, as well as different
versions of the same compiler. Thus, programmers face few perceptible clues to
the impact of source code implementation choices on performance. Success on
future platforms depends heavily on addressing these problems. Substantial
performance improvements on existing machines would also result.

This document begins with a brief overview of performance portability concerns
and challenges facing code developers as hardware advances. Then, we
enumerate common compiler deficiencies that make high performance difficult
to achieve and which hinder portability. We make concrete recommendations to
fix the problems. Next, we describe how C++ language features may be used to
build performance portable software abstractions by insulating application code
from compiler attributes and programming model details. Several efforts in the
HPC community are exploring similar concepts. Then, we describe a benchmark
we have developed to reveal key issues and demonstrate that, if compiler
support were improved, many issues we encounter are eliminated. We
recommend that such benchmarks be used for compiler evaluation and scoring.
In the Appendices, we provide detailed source code examples that illustrate
some of the more vexing issues we observe.

The single most daunting issue facing developers of HPC application codes is
discerning a practical path-forward to achieve high performance portably on
increasingly diverse hardware platforms. A typical multi-physics code, for
example, runs on a variety of machines over a wide range of scales from single
CPU laptops to petascale systems containing millions of processor cores. Such
codes have scaled successfully in the recent past primarily because processor
architectures and memory systems have remained relatively homogeneous and
consistent while CPU clock rates have increased considerably. Also, compilers
have applied optimizations that exploit sophisticated processor features, such as
instruction level parallelism (ILP), to hide latency. Consequently, application
scientists have been able to focus on coarse-grained algorithm and model
development with reasonably little concern for particular hardware details.

Although precise knowledge of looming architecture changes is unknown,
general hardware trends are clear. Most notable is the emergence of hardware
features that enable substantial fine-grained concurrency, such as multi-core
CPUs, hardware threads, vector units, and many-core GPUs. To exploit these
capabilities, codes must express different and varied forms of on node
parallelism, such as multi-core threading, SIMD vectorization, and SIMT. Also,
data locality and memory access patterns must be managed more carefully than
in the past due to increasing system complexity and heterogeneity.

SIMD vectorization is perhaps the best way to optimize for power constraints
and performance. Hardware vendors are building increasingly wider vector
units into processors. Thus, neglecting SIMD optimizations becomes more
wasteful with each advance in this hardware technology. Theoretical peak FLOPS
are measured assuming full SIMD vectorization. Real application codes typically
achieve little or no SIMD vectorization, resulting in a maximum performance of
1/4th, 1/8t™, or even 1/16™ of advertised peak FLOPS depending on vector unit
width. Translating source code into SIMD instructions is the job of a compiler.
However, the current state of compiler-specific pragmas and intrinsic directives
that programmers must provide are unmanageable in large codes (e.g., a large
multiphysics code containing a million statements may require 100,000
additional compiler-specific directives be added by hand; see Appendix A).

Large simulation efforts at DOE Laboratories have made huge investments in C
and C++ code development, which should be preserved. Achieving high levels of
concurrency while limiting data motion will likely require tuning parallelization
strategies and memory usage in these codes for particular hardware features. A
typical application code may contain tens of thousands of loops and routines that
require restructuring or rewriting. Programming models that simplify writing
parallel code and which enable compilers to optimize well are necessary to make
high performance code development a tractable problem. Robust software
abstractions that insulate domain scientist developers from implementation
details specific to compilers, platforms, and programming models are necessary
for portability.

This section enumerates C++ compiler deficiencies that make it difficult to
achieve highly optimized code and which hinder aspects of performance
portability. Often, the issues are rooted in compiler heuristics that decide when
certain optimizations are beneficial, or in vendor implementation choices when
language standards allow for interpretation. Appendix B provides source code
examples that illustrate many of these issues.

* Specialized directives. We have emphasized that current compilers
require programmer assistance to generate highly optimal, efficient code.
Generally, this involves heavy use of specialized directives and intrinsic

functions that disambiguate aliasing, or data sharing. For example,
compilers will emit no SIMD vector instructions, or possibly sub-optimal
instructions, without detailed information about data alignment and
aliasing disambiguation via the restrict pseudo-keyword. See Example A
in Appendix B.

Rather than adorn individual data pointers with directives and attributes
wherever they are used in a code, this information can be more
effectively encapsulated in a typedef, for instance. Compilers already
support this ability to varying degrees. See Example B in Appendix B.

Recommendations.

o Compilers will supply data directives and attributes to
disambiguate pointer aliasing and consistently apply robust SIMD
vectorization optimizations in response to those directives.

o Compilers will enable the __attribute_ mechanism to be applied to
pointers declared in any scope to specify data-centric information.
The goal will be to obviate the need for similar pseudo-function
based directives where possible.

o Compilers will enable data-centric __attribute__annotations to be
embedded within a typedef declaration.

* “Hit-or-miss” optimization. Compilers do not consistently propagate
directives and attributes through all elements of type systems or
optimization phases. For example, the _restrict__attribute should be
honored when attached to pointers that are fields of structures, class
members, or global variables. Typically, when structure fields are used
directly in expressions, type attributes are lost and so certain
optimizations do not occur. Certain optimizations can be recovered by
assigning fields to local variables declared with _restrict_, but this
requires extra code and makes software less readable and maintainable.
See Example C in Appendix B.

Recommendations.

o Compilers will fully propagate all information expressed in a
typedef through all optimization machinery, providing all
compilation phases with full knowledge to apply appropriate
optimizations.

o Compilers will rigorously test optimization directives as though
they were standard language features. Often, optimizations work
for some time (e.g., a few compiler releases) and then stop
working because they are not tested and maintained at the same
level of rigor as the core language.

* Insufficient inline support. Robust abstraction layers often use

lightweight functions to hide implementation details. To avoid excessive
function call overhead, programmers need more control over function
inlining. The C++ language standard leaves to the compiler to decide
whether a function will be inlined; the “inline” keyword is considered a
suggestion from a programmer. Compilers also provide various compile
line flags and arguments to influence the extent of inlining that may
occur, but these are applied indiscriminately throughout each translation
unit (i.e., source file) when specified.

Recommendations.

o Compilers will provide the ability to attach inline attributes to
functions using the “__attribute_ ” mechanism (e.g,,
“_attribute__((always_inline))”. Then, guarantee that such inlining
will always occur.

Minimum “trip-count” requirements. It is common in physics codes to
gather mesh-based data into short arrays to process for cache efficiency.
For example, we may iterate over zones on a mesh, pack data in each zone
into temporary arrays, and pass them to a function that includes a
statically bound loop over the array elements. However, compilers often
decide that loops with a trip count less than some heuristically set value
will not benefit from SIMD vectorization, without examining the actual
amount of work being done in the loop. Flop-intensive code that occurs
in a leaf function rather than directly in a loop body may also be passed
over for SIMD optimization.

Recommendations.

o Compiler will give programmers more control over when to apply
SIMD vectorization. For example, a compiler could provide an
option to always apply SIMD vectorization when it does not prevent
correctness and allow programmers to disable it, using “#pragma
novector” for example, to override this behavior.

o Compilers will attempt to SIMD vectorize algorithms that do not
appear in the context of a loop body, such as in the case of “leaf
functions” with sufficient amounts of work.

Automatic data alignment. Heap allocated data using the C-standard
library “malloc” functions and the C++ “new” operator are not required by
any language standard to be aligned with SIMD vector boundaries. The
same is true for local, stack-allocated temporary arrays, which are used
commonly in short inner loops that are nested in longer loops. Compilers
should be able to automatically align this stack data properly for SIMD
vectorization when appropriate and pass the alignment information to
the optimizer so it is applied to the extent possible.

Recommendations.

o Compilers will supply programmers with a mechanism to
guarantee that all heap data allocated through standard allocation
operations will meet a minimum alignment restriction.

o Compilers will automatically SIMD align local scope stack-based
arrays whenever they are used in operations that have the
potential for SIMD vectorization.

* Proper treatment of function attributes. Some compilers allow
programmers to attach attributes to functions with the intent of helping
the compiler optimize function calls. For example, “pure” and “const”
_attribute__ declarations indicate that a function depends only on its
arguments (and possibly global variables for “pure” functions) and have
no side effects apart from its return value. Properly annotated functions
should not inhibit certain optimizations. Using these attributes with
function prototypes in header files should be sufficient to disambiguate
aliasing assumptions for these functions in the calling routine. See
Example D in Appendix B.

Recommendations.

o Compilers will properly apply function attributes as supplied by
programmers in header function prototype declarations to
disambiguate aliasing in the calling functions. The link phase could
optionally verify that such contracts were correctly specified.

* Insufficient lambda function support. We defer this to Section 4.

In this section, we describe basic elements of powerful and flexible approaches
to portability that employs C++ language features. The viability of these
approaches requires resolution of fundamental, yet largely straightforward,
compiler deficiencies, discussed here, in Section 3, and illustrated in Appendix B.

Software engineers working on large applications possess deep knowledge and
insight about how to build software abstractions that can insulate much of the
source code from concerns specific to compilers, platforms, and programming
models. For example, the early standardization of MPI and encapsulation of its
functionality in codes has enabled excellent coarse-grained parallel scalability on
platforms to date. We contend further advances in encapsulation of other
parallelization and platform concerns are necessary to make large codes
performance portable now and into the future. Programming models, such as
OpenMP, OpenACC, OpenCL, CUDA, etc., do simplify the process of exploiting
other finer-grained forms of parallelism. However, these models differ in
maturity and there is no available, or proposed, programming model that
provides a “one size fits all” solution to all potential parallelization strategies. In

addition, each requires specialized syntax and programming considerations.
The diversity of potential programming models and constructs, with non-
uniform usage considerations, exacerbates the already difficult problem of
increasing the amount of application concurrency.

DOE Laboratory and industry efforts are exploring the potential of standard C++
language features to solve performance portability issues. Efforts include: RAJA
at LLNL, the KokkosArray Library at SNL, Threading Building Blocks (TBB) from
Intel, the open source Thrust Library promoted by Nvidia, and the Bolt Library
from the Heterogeneous System Architecture Foundation, to name a few. These
models share a common approach to use high-level C++ features to decouple
algorithm representations from their implementations. Such decoupling enables
compile time specialization of data layouts and access patterns as well as
parallelization strategies. Other aspects of execution, such as work scheduling
and dispatch, can be definable at run time. The key point is that implementation
details tuned for particular architectures are embedded in software abstractions.
These abstractions, in turn, rely on the basic level of compiler functionality
discussed in Section 3 to enable machine specific optimizations.

Well-designed abstractions allow application developers to be insulated from
details associated with compilers and platforms. Abstraction layers also provide
the ability to employ various programing models without wedding a code to any
particular one. For example, a lightweight C++ API can be inserted into an
existing C++ code with less code modification compared to incorporating some
programming models directly. The result is that applications can be more
flexible and achieve portable high performance without major code changes for
new hardware.

As a basic illustration, consider a simple “daxpy” operation implemented using a
C/C++ for-loop:

for (int i = begin; i < end; ++i) {
y[i] += a*x[i];
}

«__n

Here, “x” and “y” are arrays of floating point data and “a” is a scalar. Suppose we
decouple the loop iteration from the loop body by encoding the loop traversal in
a generic function template, such as:

template < typename LOOP_BODY >
void forall(int begin, int end, LOOP_BODY body)
{

for (int i = begin; i < end; ++i) body(i);
}

Then, we can instantiate the loop in a code by calling the method and passing the
loop body as an argument (here we use a C++ lambda function):
forall(begin, end, [&] (int i) ({
y[i] += a*x[i];
})

Note that the loop body is written verbatim as in the original code. An index
range (“beg”, “end”) and a loop variable (“i”) passed to the template method

define the traversal.

“w=n
1

What have we accomplished with this software decoupling? It may appear that
we have done nothing more than write the operation using more complicated
C++ syntax. However, this example shows some important connections between
software abstractions and performance portability. Note that the original loop
implementation explicitly defines the iteration order and the pattern of data
access and execution scheduling in the application code. The forall() method
approach expresses the same operations, but separates the implementation
details from the application code. In particular, we can hide compiler directives
and other code decorations from the source code by placing them in a generic
traversal method. Different traversal methods, defined in platform-specific
header files for instance, can be used transparently in the code for machine
specific optimizations. Many (possibly thousands) of loop bodies may share the
same traversal method. Likewise, we may pass a given loop body to various
“forall” templates that apply different execution strategies. For data parallel
loops, for instance, we can add an OpenMP “parallel for” directive to yield thread
parallelization. We can also apply different iteration patterns based on different
array data layouts. Centralized control of traversal is important for portability,
especially where different memory subsystems have different chunking and
timing rules for data access.

While not every loop is amenable to the sort of loop abstraction layer shown
here, a substantial majority of loops in large physics codes are. To apply such
loop abstractions, application developers would characterize performance-
critical loops in their codes according to their loop structure and parallel
execution possibilities. Then, they would convert the for-expression portion of a
for-statement, to a call to a traversal method and pass the unchanged loop body
statement as a lambda function. At that point, implementation alternatives can
be explored easily within the centralized traversal method.

Lambda functions are a centerpiece feature of the C++11 language standard.
They greatly simplify the use of generic C++ algorithms based on function
templates, which have been widely used for well over a decade. Here, we suggest
that lambda functions can be an important tool for building software
abstractions that address performance portability problems. Unfortunately,
some C++ compilers do not support lambda functions yet. For those compilers,

one could use C++ functors instead, but this is a highly unattractive alternative in
this context due to cumbersome syntax, scoping rules, and poor code readability.
We expect that all vendors will implement the C++11 language standard
eventually as an increasing number of C++ developers will want to more easily
exploit powerful capabilities in the C++ standard library and others such as
Boost, Thrust, and Bolt libraries.

The compile-time polymorphism, which enables separation of the traversal and
the algorithm, allows code operations to be tailored to different programming
models and execution environments with little or no change to application code.
Since loops are instantiated at compile time, all appropriate optimizations are
possible, as long as compiler functionality is robust. However, all C++ compilers
are deficient in their ability to yield high quality optimizations when using
lambda functions or functors with function templates. The issues are similar to
the treatment of structure fields and class members described in Section 3. See
Example C and Example E in Appendix B.

Our recommendations to compiler vendors with respect to their support for
lambda functions are:

* Compilers will fully support lambda functions and other related elements
of the C++11 language standard. Compiler vendors that do not will
alienate a large portion of the scientific computing community that rely
on C++ abstractions for architectural portability in addition to many
other C++ developers.

* Compilers will properly propagate data type attributes completely
through the lambda variable capture mechanism so that when lambda
functions are passed as arguments to function templates, these functions
will optimize as though they were inline code.

* Compilers will look for opportunities to do an inlining pass before lambda
function instantiation, allowing for potentially better optimizations. For
example, inlining a traversal method first may be more amenable to
optimization than first converting a lambda function to an internal
functor and then applying the inline pass.

We have developed a new “21st Century Livermore Loops” test suite. It is based
in part on “Livermore Loops Coded in C”, developed by Steve Langer at LLNL in
the mid-1990s, which was derived from “Livermore FORTRAN Kernels”, by
Frank McMahon which appeared a decade earlier. These older suites were used
to evaluate floating-point performance of hardware platforms prior to porting
larger application codes.

The new suite is geared toward assessing C++ compiler optimizations. It
contains 20 of 24 loop kernels from the older suites, plus various others

representative of loops found in current production application codes at LLNL.
The latter loops emphasize more complex operations, loop constructs, and data
access patterns than the others, such as multi-dimensional finite difference
stencils. The loop suite framework is configurable; for example, it is
straightforward to control compilation, loop sampling for execution timing,
which loops are run and their lengths. It generates timing statistics for analysis
and comparing variants of individual loops.

An initial goal of the new loop suite was to compare performance of commonly
used C language “for”-loop constructs and alternatives that employ abstractions
based on more advanced C++ language features as described in Section 4. With
the suite, we have demonstrated that code abstractions used in this way can be
optimized fully by a C++ compiler with robust lambda function and inline
support. Figure 1 below illustrates the point for a particular compiler. Other
compilers show similar qualitative behavior. The plot compares loop runtimes
for variants where we pass the loop body as a lambda function to a generic
"forall" method (see Section 4) to traditional C-style for-loops. The vertical axis
is relative run time of the forall-lambda variant normalized to the C-style variant.

Run time forall-lambda variants relative to raw variants:
base case and with "type fixes" applied

25

15

W base

o w/FIX

0

| SO

N & L P @ P ES S \\\b*\‘f‘ PSP

& Fof 3 RS YO0l & YN

QS’/G\/’*;Q/\\‘& @ \YQQ«/ & /o‘*o S QQS’ Q‘g”é\/‘;\’ S 3&(7(" P K87

S LS T ST g €T SO @E &S

S N S S s Y T elor
& & N

Figure 1. This chart compares runtimes of forall-lambda loop variants (see Section 4) to C-
style for-loop variants (normalized value of 1 on vertical axis). Blue bars are runtimes when
loop bodies are translated verbatim to lambda functions. Red bars are times when the “fix” in
Example E in Appendix B is applied. Intel compiler version 13.0.117 used with options:

“-03 -mavx -inline-max-total-size=10000 -inline-forceinline -ansi-alias -std=c++0x".

10

Blue and red bars indicate forall-lambda variants with and without a “fix” where
type attributes are re-declared within the lambda expression using local pointer
variables, respectively. For example, the chart shows that the runtime of the
forall-lambda variant of the “EOS” loop without the “fix” is twice that of the C-
style loop, whereas the run time is the same as the C-style variant when the “fix”
is applied. See Example E in Appendix B for an explanation of the “fix”.

The most important thing to note about this plot is that when the “fix” is applied,
all forall-lambda loop variants run as fast as C-style for loops. Without the “fix”,
the performance impact is substantial, up to 2.5x slower in several cases. From
experiments like this, we conclude that compilers have sufficient machinery to
fully optimize the code abstractions. However, they require excessive source
code hints from programmers to optimize properly in their current state.

The ability of compilers to optimize through abstraction layers is essential to
achieve performance portability with standard programming languages. The
loop suite has helped us expose and understand compiler optimization issues
and platform capabilities. Code snippets extracted from the suite are the basis
for our continuing interactions with compiler vendors to resolve issues. It would
be immensely beneficial to the HPC community to include a similar loop suite in
future platform procurements. This would provide a way to score compiler
optimization capabilities as they apply to larger production codes and help us in
our procurement decisions.

11

This appendix shows the variety of source code needed by compilers to generate
optimal SIMD vector instructions. All code examples are variations of the
following simple data parallel “daxpy” routine:

void daxpy(double *y, double a, double *x, int len) {

for (int i=0; i<len; ++i)
y[i] += a*x[i] ;
}

Compilers typically will not optimize such an operation in this “undecorated”
form; for example, SIMD vector instructions will not be generated. Data pointers
in C and C++ force compilers to make conservative assumptions about data
aliasing and alignment to insure correct execution. Such assumptions typically
prevent many optimizations. The following code examples show variations
among code adornments for three different compilers that programmers may
use to provide precise source code hints to enable SIMD optimizations.

Intel (v13.0.117):

void daxpy(double * restrict _ y, double a,

double * restrict x, int len) {
__assume_aligned(x, 16) ;
__assume_aligned(y, 16) ;

for (int i=0; i<len; ++i)
y[i] += a*x[i] ;

IBM (older BG/L compiler):

void daxpy(double * restrict _ y, double a,
double * restrict x, int len) {
#pragma disjoint (*x, *y)
__alignx(16, x) ;
__alignx(16, y) ;

for (int i=0; i<len; ++i)
y[i] += a*x[i] ;

GNU (v4.7):

12

void daxpy (double *yy, double a, double *xx, int len) {
double * restrict__ x =
(double * restrict_) _builtin assume_aligned(xx, 16);
double * restrict__y =
(double * restrict) _builtin assume_aligned(yy, 16);

for (int i=0; i<len; ++1i)
y[i] += a*x[i] ;

Although the “_restrict_" pseudo-keyword is not part of the C++ language
standard (it is in the C99 standard), most compilers support it to express data
alias disambiguation. Typically, the restrict qualifier is sufficient to achieve some
level of SIMD vectorization. Data alignment information is required to generate
efficient vector instructions. Data alignment annotations are often unique for
each compiler and may involve pragma directives or intrinsic functions as
shown here.

Several important points should be taken away from these examples. First,
decorations that are generally required to enable compiler optimizations vary
significantly across compilers. Second, inserting such decorations in a large code
with many loops (tens of thousands of loops in a large physics code is common)
for a single compiler is a substantial task. Third, when the code must be built
with different compilers to execute on a variety of platforms, it is very difficult to
enable all compiler optimization features in a maintainable manner.

One of key recommendations we make in this document is that compiler vendors
support the attachment of attributes for data aliasing disambiguation and
alignment to data pointers using a typedef declaration. See Example B in
Appendix B for details. By specifying compiler-specific information in a single
location, such as a header file, it can be propagated easily to many appropriate
sites in a large code. Then, for example, our daxpy routine would appear in a
much more maintainable form in a code as:

void daxpy(Real ptr y, double a, Real ptr x, int len) {

for (int i=0; i<len; ++i)
y[i] += a*x[i] ;
}

Here, “Real_ptr” is a typedef that decorates a double pointer with necessary
compiler-specific data restriction and alignment information.

13

This appendix illustrates compiler optimization issues discussed in Section 3
using simple code examples.

This example shows that compilers typically require detailed information about
data aliasing disambiguation to generate optimal SIMD vectorized code.

void muladdsubl (int len,
double* restrict__ outl,
double* restrict__ out2,
double* restrict__ out3,
double* inl, double* in2)

for (int i=0; i<len ; ++i) {
outl[i] = inl[i] * in2[i];
out2[i] = inl[i] + in2[i];
out3[i] = inl[i] - in2[i];

The muladdsub1() routine contains a simple data parallel loop. Without the
_restrict__ qualifier on the “out” variables, compilers will not generate SIMD
instructions typically since the possibility of data aliasing automatically
disqualifies SIMD operations. The addition of __restrict__ enables suboptimal
SIMD operations (Example B shows what is required for better SIMD
generation). Without _restrict_, this loop will read six input double values
(“in1” and “in2” redundantly for each statement). Here, _restrict__indicates
that the written values do not overlap memory with the input values, and so the
“In” variables only need to be read once per loop iteration, curtailing six memory
read operations to two, and reducing memory bandwidth pressure.

This example shows how attributes for data aliasing disambiguation and
alignment can be attached to data pointers using a typedef declaration. This is a
much cleaner and maintainable alternative since a single typedef can be placed
in a header file and then used throughout a large code easily.

Every C++ compiler supports the attachment of the “__restrict__" qualifier to
pointers via a typedef. The additional use of alignment attributes can enable
better SIMD instruction generation. However, not all compilers will allow
alignment attributes to be specified in a typedef declaration as shown in function
muladdsub?2() below. Compilers may instead require the use of a specialized
intrinsic function for each non-aliased pointer in a code (recall Appendix A). For
a large code with 20,000 loops and five array variables per loop, this amounts to
100,000 extra lines of non-portable code to achieve full optimization.

14

typedef double* restrict
__attribute_((align_value (32))) Real ptr;

//

void muladdsub2 (int len,
Real ptr outl, Real ptr out2, Real ptr out3,
Real ptr inl, Real ptr in2)

for (int i=0; i<len ; ++i) {

outl[i]
out2[i]
out3[i]

inl[i] * in2[i];
inl[i] + in2[i];
inl[i] - in2[i];

This example shows that attributes attached to structure fields (or class
members) may be lost during compilation preventing certain optimizations.

Assume that we use the “Real_ptr” typedef from Example B to attach attributes

to pointers. Instead of passing individual data pointers to a function, we pass
them as fields in a struct as shown in the mulsubadd3() function below. When
this is done, a compiler will not generate packed data move or arithmetic SIMD
instructions, indicating that the attributes were dropped during compilation.
This has important implications for large codes, which often pass data pointers
encapsulated in structures to functions to improve code readability and

maintenance.

struct LoopData {

Real ptr

Real ptr

Real ptr

Real ptr

Real ptr
}i

//

inl;
in2;
outl;
out2;
out3;

void muladdsub3(int len, LoopData& d)

{

for (int i=0; i<len ; ++I) {
d.outl[i] = d.inl[i] * d.in2[i];
d.out2[i] = d.inl[i] + d.in2[i];
d.out3[i] = d.inl[i] - d.in2[i];

15

void muladdsub3a(int len, LoopData& d)
{

Real ptr inl = d.inl;
Real ptr in2 = d.in2;
Real ptr outl = d.outl;
Real ptr out2 = d.out2;
Real ptr out3 = d.out3;

for (int i=0; i<len ; ++i) {
outl[i] = inl[i] * in2[i];
out2[i] = inl[i] + in2[i];
out3[i] = inl[i] - in2[i];

}

The function muladdsub3a() is the same as mulsubadd3() except that we
declare local pointer variables (using our typedef) and set them to the fields in
the structure. These extra lines of code enable optimal SIMD vectorization.

This example shows that external functions without proper attributes may
disrupt compiler optimizations.

double add(double a, double b) _ attribute__ ((pure));

void muladdsub4 (int len,
double* restrict__ outl,
double* _ restrict__ out2,
double* _ restrict__ out3,
double* inl, double* in2)

for (int i=0; i<len ; ++i) {

outl[i] = add(inl[i], in2[i]);
out2[i] = inl[i] + in2[i];
out3[i] = inl[i] - in2[i];

Here we have defined an external add() function that adds two doubles. The
“pure” attribute tells the compiler that the add() function has no side effects;
e.g., it will not affect the data arrays used in the muladdsub4() function. Without
the pure attribute, the compiler must assume the external function can modify
any memory location, disabling its ability to apply optimizations.

16

This example shows that attributes attached to pointers passed through the
lambda function variable capture mechanism (or as members of a functor) are
typically lost during compilation preventing certain optimizations.

template < typename LOOP_BODY >
void forall(int begin, int end, LOOP_BODY body)
{

for (int i = begin; i < end; ++i) body(i);
}

//...

void muladdsub5 (int len,

Real ptr outl, Real ptr out2, Real ptr out3,
Real ptr inl, Real ptr in2)

forall(0, len, [&] (int i) {
outl[i] = inl[i] * in2[i];
out2[i] = inl[i] + in2[i];
out3[i] = inl[i] - in2[i];
})

Here, we use the loop traversal template method from Section 4. The function
muladdsub5() passes the loop body as a lambda function. Typically, a compiler
will generate suboptimal SIMD vector instructions, if any are generated at all, for
the loop in this routine. It will create an internal “functor” class/struct to
represent the lambda function. As we have noted in Example C, type attributes
are not attached to the associated data members/fields, typically.

Actually, we can achieve fully optimal SIMD vectorization with a “fix” that re-
establishes type attributes with local variables in the lambda expression, as
shown in the function muladdsub5a():

void muladdsub5a(int len,

Real ptr outl, Real ptr out2, Real ptr out3,
Real ptr inl, Real ptr in2)

forall(0, len, [&] (int i) {

Real ptr toutl = outl;
Real ptr tout2 = out2;
Real ptr tout3 = out3;

toutl[i] inl[i] * in2[i];

tout2[i] inl[i] + in2[i];

tout3[i] = inl[i] - in2[i];
})

17

This example clearly demonstrates that compilers contain sufficient machinery
to optimize abstractions we discuss here, but only if awkward constraints are
met. More formal treatment of types and attributes in compilers, and passing all
type attributes through all compilation phases, would make it much less onerous
for developers to write code that can be highly optimized.

For completeness, the function muladdsub6() below shows the loop body
represented as a functor class, an object of which is passed to the loop traversal
method. This version of the loop has the same optimization issues as the
previous lambda function example and good optimization can be achieved using
the same sort of local variable technique.

Finally, the functor code in this example illustrates a point that is worth
emphasizing. Comparing the functor and lambda versions should make clear
that the simplicity of lambda function usage and syntax is a much preferable
alternative to the cumbersome code mechanics associated with functor classes.

class MULADDSUB Functor
{
public:
MULADDSUB_Functor (Real ptr outl, Real ptr out2, Real ptr out3,
Real ptr inl, Real ptr in2)
m_outl (outl), m out2(out2), m out3(out3),
m _inl(inl), m _in2(in2) { ; }

void operator () (int i)

{
m outl[i] = m inl[i] * m_in2[i];
m out2[i] = m inl[i] + m_in2[i];
m out3[i] = m inl[i] - m_in2[i];
}

Real ptr m_outl;

Real ptr m_out2;

Real ptr m_out3;

Real ptr m_inl;

Real ptr m_in2;
};

//...

void muladdsub6 (int len,
Real ptr outl, Real ptr out2, Real ptr out3,
Real ptr inl, Real ptr in2)

MULADDSUB_Functor kernel (outl, out2, out3, inl, in2);

forall(0, len, kernel);

18

